上节我们介绍了显式锁,本节介绍关联的显式条件,介绍其用法和原理。显式条件也可以被称做条件变量、条件队列、或条件,后文我们可能会交替使用。
用法
基本概念和方法
锁用于解决竞态条件问题,条件是线程间的协作机制。显式锁与synchronzied相对应,而显式条件与wait/notify相对应。wait/notify与synchronized配合使用,显式条件与显式锁配合使用。
条件与锁相关联,创建条件变量需要通过显式锁,Lock接口定义了创建方法:
Condition newCondition();
Condition表示条件变量,是一个接口,它的定义为:
public interface Condition {
void await() throws InterruptedException;
void awaitUninterruptibly();
long awaitNanos(long nanosTimeout) throws InterruptedException;
boolean await(long time, TimeUnit unit) throws InterruptedException;
boolean awaitUntil(Date deadline) throws InterruptedException;
void signal();
void signalAll();
}
await()对应于Object的wait(),signal()对应于notify,signalAll()对应于notifyAll(),语义也是一样的。
与Object的wait方法类似,await也有几个限定等待时间的方法,但功能更多一些:
//等待时间是相对时间,如果由于等待超时返回,返回值为false,否则为true boolean await(long time, TimeUnit unit) throws InterruptedException; //等待时间也是相对时间,但参数单位是纳秒,返回值是nanosTimeout减去实际等待的时间 long awaitNanos(long nanosTimeout) throws InterruptedException; //等待时间是绝对时间,如果由于等待超时返回,返回值为false,否则为true boolean awaitUntil(Date deadline) throws InterruptedException;
这些await方法都是响应中断的,如果发生了中断,会抛出InterruptedException,但中断标志位会被清空。Condition还定义了一个不响应中断的等待方法:
void awaitUninterruptibly();
该方法不会由于中断结束,但当它返回时,如果等待过程中发生了中断,中断标志位会被设置。
一般而言,与Object的wait方法一样,调用await方法前需要先获取锁,如果没有锁,会抛出异常IllegalMonitorStateException。await在进入等待队列后,会释放锁,释放CPU,当其他线程将它唤醒后,或等待超时后,或发生中断异常后,它都需要重新获取锁,获取锁后,才会从await方法中退出。
另外,与Object的wait方法一样,await返回后,不代表其等待的条件就一定满足了,通常要将await的调用放到一个循环内,只有条件满足后才退出。
一般而言,signal/signalAll与notify/notifyAll一样,调用它们需要先获取锁,如果没有锁,会抛出异常IllegalMonitorStateException。signal与notify一样,挑选一个线程进行唤醒,signalAll与notifyAll一样,唤醒所有等待的线程,但这些线程被唤醒后都需要重新竞争锁,获取锁后才会从await调用中返回。
用法示例
ReentrantLock实现了newCondition方法,通过它,我们来看下条件的基本用法。我们实现与67节类似的例子WaitThread,一个线程启动后,在执行一项操作前,等待主线程给它指令,收到指令后才执行,示例代码为:
public class WaitThread extends Thread {
private volatile boolean fire = false;
private Lock lock = new ReentrantLock();
private Condition condition = lock.newCondition();
@Override
public void run() {
try {
lock.lock();
try {
while (!fire) {
condition.await();
}
} finally {
lock.unlock();
}
System.out.println("fired");
} catch (InterruptedException e) {
Thread.interrupted();
}
}
public void fire() {
lock.lock();
try {
this.fire = true;
condition.signal();
} finally {
lock.unlock();
}
}
public static void main(String[] args) throws InterruptedException {
WaitThread waitThread = new WaitThread();
waitThread.start();
Thread.sleep(1000);
System.out.println("fire");
waitThread.fire();
}
}
需要特别注意的是,不要将signal/signalAll与notify/notifyAll混淆,notify/notifyAll是Object中定义的方法,Condition对象也有,稍不注意就会误用,比如,对上面例子中的fire方法,可能会写为:
public void fire() {
lock.lock();
try {
this.fire = true;
condition.notify();
} finally {
lock.unlock();
}
}
写成这样,编译器不会报错,但运行时会抛出IllegalMonitorStateException,因为notify的调用不在synchronized语句内。
同样,避免将锁与synchronzied混用,那样非常令人混淆,比如:
public void fire() {
synchronized(lock){
this.fire = true;
condition.signal();
}
}
记住,显式条件与显式锁配合,wait/notify与synchronized配合。
生产者/消费者模式
在67节,我们用wait/notify实现了生产者/消费者模式,我们提到了wait/notify的一个局限,它只能有一个条件等待队列,分析等待条件也很复杂。在生产者/消费者模式中,其实有两个条件,一个与队列满有关,一个与队列空有关。使用显式锁,可以创建多个条件等待队列。下面,我们用显式锁/条件重新实现下其中的阻塞队列,代码为:
static class MyBlockingQueue<E> {
private Queue<E> queue = null;
private int limit;
private Lock lock = new ReentrantLock();
private Condition notFull = lock.newCondition();
private Condition notEmpty = lock.newCondition();
public MyBlockingQueue(int limit) {
this.limit = limit;
queue = new ArrayDeque<>(limit);
}
public void put(E e) throws InterruptedException {
lock.lockInterruptibly();
try{
while (queue.size() == limit) {
notFull.await();
}
queue.add(e);
notEmpty.signal();
}finally{
lock.unlock();
}
}
public E take() throws InterruptedException {
lock.lockInterruptibly();
try{
while (queue.isEmpty()) {
notEmpty.await();
}
E e = queue.poll();
notFull.signal();
return e;
}finally{
lock.unlock();
}
}
}
定义了两个等待条件:不满(notFull)、不空(notEmpty),在put方法中,如果队列满,则在noFull上等待,在take方法中,如果队列空,则在notEmpty上等待,put操作后通知notEmpty,take操作后通知notFull。
这样,代码更为清晰易读,同时避免了不必要的唤醒和检查,提高了效率。java并发包中的类ArrayBlockingQueue就采用了类似的方式实现。
实现原理
ConditionObject
理解了显式条件的概念和用法,我们来看下ReentrantLock是如何实现它的,其newCondition()的代码为:
public Condition newCondition() { return sync.newCondition(); }
sync是ReentrantLock的内部类对象,其newCondition()代码为:
final ConditionObject newCondition() { return new ConditionObject(); }
ConditionObject是AQS中定义的一个内部类,不了解AQS请参看上节。ConditionObject的实现也比较复杂,我们通过一些主要代码来简要探讨其实现原理。ConditionObject内部也有一个队列,表示条件等待队列,其成员声明为:
//条件队列的头节点 private transient Node firstWaiter; //条件队列的尾节点 private transient Node lastWaiter;
ConditionObject是AQS的成员内部类,它可以直接访问AQS中的数据,比如AQS中定义的锁等待队列。
我们看下几个方法的实现,先看await方法。
await实现分析
下面是await方法的代码,我们通过添加注释解释其基本思路。
public final void await() throws InterruptedException {
// 如果等待前中断标志位已被设置,直接抛异常
if (Thread.interrupted())
throw new InterruptedException();
// 1.为当前线程创建节点,加入条件等待队列
Node node = addConditionWaiter();
// 2.释放持有的锁
int savedState = fullyRelease(node);
int interruptMode = 0;
// 3.放弃CPU,进行等待,直到被中断或isOnSyncQueue变为true
// isOnSyncQueue为true表示节点被其他线程从条件等待队列
// 移到了外部的锁等待队列,等待的条件已满足
while (!isOnSyncQueue(node)) {
LockSupport.park(this);
if ((interruptMode = checkInterruptWhileWaiting(node)) != 0)
break;
}
// 4.重新获取锁
if (acquireQueued(node, savedState) && interruptMode != THROW_IE)
interruptMode = REINTERRUPT;
if (node.nextWaiter != null) // clean up if cancelled
unlinkCancelledWaiters();
// 5.处理中断,抛出异常或设置中断标志位
if (interruptMode != 0)
reportInterruptAfterWait(interruptMode);
}
awaitNanos实现分析
awaitNanos与await的实现是基本类似的,区别主要是会限定等待的时间,如下所示:
public final long awaitNanos(long nanosTimeout) throws InterruptedException {
if (Thread.interrupted())
throw new InterruptedException();
Node node = addConditionWaiter();
int savedState = fullyRelease(node);
long lastTime = System.nanoTime();
int interruptMode = 0;
while (!isOnSyncQueue(node)) {
if (nanosTimeout <= 0L) {
//等待超时,将节点从条件等待队列移到外部的锁等待队列
transferAfterCancelledWait(node);
break;
}
//限定等待的最长时间
LockSupport.parkNanos(this, nanosTimeout);
if ((interruptMode = checkInterruptWhileWaiting(node)) != 0)
break;
long now = System.nanoTime();
//计算下次等待的最长时间
nanosTimeout -= now - lastTime;
lastTime = now;
}
if (acquireQueued(node, savedState) && interruptMode != THROW_IE)
interruptMode = REINTERRUPT;
if (node.nextWaiter != null)
unlinkCancelledWaiters();
if (interruptMode != 0)
reportInterruptAfterWait(interruptMode);
return nanosTimeout - (System.nanoTime() - lastTime);
}
signal实现分析
signal方法代码为:
public final void signal() {
//验证当前线程持有锁
if (!isHeldExclusively())
throw new IllegalMonitorStateException();
//调用doSignal唤醒等待队列中第一个线程
Node first = firstWaiter;
if (first != null)
doSignal(first);
}
doSignal的代码就不列举了,其基本逻辑是:
- 将节点从条件等待队列移到锁等待队列
- 调用LockSupport.unpark将线程唤醒
小结
本节介绍了显式条件的用法和实现原理。它与显式锁配合使用,与wait/notify相比,可以支持多个条件队列,代码更为易读,效率更高,使用时注意不要将signal/signalAll误写为notify/notifyAll。
从70节到本节,我们介绍了Java并发包的基础 - 原子变量和CAS、显式锁和条件,基于这些,Java并发包还提供了很多更为易用的高层数据结构、工具和服务,从下一节开始,我们先探讨一些并发数据结构。
(与其他章节一样,本节所有代码位于 https://github.com/swiftma/program-logic)
发表评论:
◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。